
Advanced Design System 2002

MDS Design Translation

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.
ii

Contents
1 Design Translation Overview

Translated Items ... 1-2

2 Importing and Simulating
Exporting Designs from MDS ... 2-1
Translating Designs into ADS ... 2-3
Importing MDS Datasets .. 2-5
Specifying the Metal Layer for Circuit Components in Layout Pages 2-6

3 Translation Example
Translating the Design .. 3-1

Importing the MDS Dataset .. 3-3
Simulating the Design in ADS .. 3-4

Comparing MDS and ADS Results... 3-5

A Model and Component Differences
Introduction... A-1
Similar Components ... A-1
Components Unique to MDS.. A-2

B Translating Design Libraries
Copying Designs to an MDS Project .. B-2
Relocating Designs for Site-Wide Use ... B-2

C Translator Customization
Writing Custom Translation Rules .. C-1

Retrieving Parameter Values from MDS Data Items .. C-4
Setting Parameter Values Using AEL Functions .. C-4
Mapping Component Pin Changes .. C-7
Mapping to a Component Based on Parameter Specifics.................................. C-8

Creating Customized Rules Files ... C-9

D Batch Mode Translation
hpeesofme Setup ... D-1

Windows... D-1
UNIX... D-1

Executing hpeesofme ... D-2
Additional Option Information ... D-3

Example.. D-4

E Translation Issues
Known Issues ... E-1
Component Power Parameters... E-2
iii

Datasets ... E-2
Density and Distribution Controls ... E-4
Microstrip Tee Models... E-4
Momentum.. E-4
Monte Carlo Controls.. E-4
step() Function... E-5
Symbolically Defined Devices .. E-5
Unsupported Components ... E-5

Index
iv

Chapter 1: Design Translation Overview
The MDS-to-ADS translator allows you to import MDS designs into a new or existing
Advanced Design System project. This is done by saving MDS designs in IFF format
and passing them through the translator. Each MDS component is replaced by its
MDS equivalent or closest ADS equivalent, and the layout geometry is preserved.

The following steps are normally followed when translating MDS designs for use in
the Advanced Design System:

• Save Design as IFF: The MDS design is saved as an IFF file using the migration
script migrate.ddl.

• Import Design: The design is imported into an Advanced Design System
project. For information on importing designs, refer to “Importing and
Simulating” on page 2-1.

• Simulate Design: The design is simulated. The Simulation/Synthesis window
appears and displays the simulation status including any problems that were
encountered.

• Compare Results: The ADS and MDS simulation results are compared to verify
that the translation occured normally. The results may differ because MDS and
ADS use different components and simulators. Significantly different results
could be an indication of a translation or model mapping problem.

Import Design

Simulate Design

Compare Results

Save Design as IFF
1-1

Design Translation Overview
Translated Items
The translator allows you to migrate the following libraries from MDS to ADS:

• Microwave (MWLib)

• System Model (SysLib)

• Multilayer (MultiLayerLib)

A portion of the MDS components are not supported. These are identified in
“Translation Issues” on page E-1. Note that DDL scripts, presentations,
workbenches, and documents are not translated. Datasets can be imported into ADS
using CITI files (refer to “Importing MDS Datasets” on page 2-5).
1-2 Translated Items

Chapter 2: Importing and Simulating
To use MDS designs in ADS, the designs must be exported from MDS, translated to
ADS, and the MDS datasets imported. The procedures for accomplishing these tasks
are presented in this chapter.

Exporting Designs from MDS
The translator comes with the file migrate.ddl which allows you to export
hierarchical designs from MDS. This file should be copied from the ADS installation
directory $HPEESOF_DIR/config to the directory that you use to start MDS.

Note Do not use the command Export > IFF to generate the IFF file.

In MDS there are two ways to specify the simulation setup: using the Simulation
Setup dialog box (shown in the following illustration) or by placing the simulation
components on the schematic.
Exporting Designs from MDS 2-1

Importing and Simulating
If you use the Simulation Setup dialog box, the simulation controls might not be
correctly set in ADS. To prevent this problem, convert the dialog box settings to
components on the schematic before exporting the designs. To do this, click the
Manage button and select Copy to schematic . This will place simulation components
on the schematic.

To export the design from MDS:

1. Start MDS.

2. Open the Workbench window containing the designs or the top design of a
design hierarchy.

3. Choose PERFORM > DDL in the top menu bar.

4. The DLL Command File dialog box appears. It prompts you for the name of a
DDL file. Enter migrate.ddl and click OK.
2-2 Exporting Designs from MDS

5. The Migration dialog box appears and prompts you for the name of the
Migration Output File. Enter a filename that ends with an .iff extension (i.e.,
amp900mhz.iff). If you invoked the DDL script from a workbench window, you
also have the option to include or exclude layout pages (by default, layouts are
not translated). Click OK.

6. The status of the export will appear in the Messages dialog box. The message
Output Complete should appear. It indicates that the export was successful.

If the dialog box indicates that a component was not found during the export,
you may not have the necessary library files mounted on the MDS screen.

7. Repeat the previous steps for each design that you need to migrate.

Translating Designs into ADS
An MDS design can be imported into an ADS project using the steps given below.

Note Prior to translating designs/files that reference or consist of MDS user-defined
models, you need to update those models with their ADS equivalents.

When exporting a design from MDS to ADS, use the script migrate.dll.

To import an MDS design into an ADS project, do the following:

1. Start the translator.

On UNIX systems, type mds2ads at the prompt.

On a PC, from the Start menu choose Programs > Advanced Design System 2001
> ADS Tools > Microwave Design System Import .

2. The MDS to ADS Import dialog box appears.
Translating Designs into ADS 2-3

Importing and Simulating
Identify the MDS IFF filename by entering the path and filename name into
the Source IFF File field. You can also click the Browse button and use the
Import File Selection dialog box to locate and select the file.

3. In the ADS Project Name field, accept the existing ADS project name or specify
a different one (if the project does not exist, it will be created).

Note Spaces are not allowed in project paths or project names.

4. In the Directory for ADS Project field type the complete path. You can also click
the Browse button and use the Destination Project Selection dialog box to set
the path.

5. Select the Distributed Components that you want to use.

Note The ADS standard distributed components and MDS equivalent
distributed components may produce slightly different simulation results. It is
recommended that you use the ADS distributed components.
2-4 Translating Designs into ADS

6. Click Length Units and select the appropriate setting. This establishes a default
for components placed in the new project. It also serves as a default for all
designs in the project and is both:

• The unit of measure for parameters with physical length (in both Schematic
and Layout windows)

• The design unit (grid display and cursor snapping) in the Layout window

Click OK to establish the Length Units.

7. If the design(s) you are translating references user-defined models for which
you have created one or more customized rules files, click Custom Rules . Select
the Use Custom Rules check box and click OK. For details on creating and using
customized rules files, refer to “Creating Customized Rules Files” on page C-9.

8. Click Import to begin the import process. The Status window displays feedback
during the import process and will list any problems that occur. This
information is also written to the file me_proj.log in the ADS project directory.
The file me_err.log in the same directory contains detailed information about
the component translation.

Importing MDS Datasets
To import an MDS dataset into ADS, do the following:

1. From the MDS main window, double-click the design icon of interest.

2. The File window appears. Choose Window > Change Page > Index Page .

3. Right-click and choose Perform > Write > Citifile .

4. The Citifile dialog box appears. Enter the dataset name and click OK.

5. From the ADS Main window, choose File > Open Project to open the translated
MDS project.

6. From a Schematic or Layout window, start the Instrument Server (Window >
File/Instrument Server, or click the toolbar icon).

7. The Instrument Server window appears. In the Read From area, select File .

8. Select Citifile from the File Format to Read from list.

9. Enter the name of the Citifile in the File Name field or click the Browse button
to locate and select it.
Importing MDS Datasets 2-5

Importing and Simulating
10. Type the name of the dataset in Dataset Name field.

11. Click the Read File button. The Status Window appears. It should say that the
file was read successfully.

12. Click the Update Dataset List button.

Specifying the Metal Layer for Circuit Components in
Layout Pages
MDS circuit elements in layout drawing pages are laid out using a table that maps
symbolic layer names (metal, assembly,...) to physical layer names. For example, the
default metal layer for mwlib elements is FMetal. In ADS, the metal layer for
microstrip elements is always layer 1. You can’t change this assignment. A layer
mapping rule is used to swap the metal layer with the layer that is assigned the ID =
1.

A layer mapping rule uses the following syntax:

layerIcon| ;metalLayer; ; ;MDSlayer1|

where

layerIcon is the name of the MDS layout icon that contains the layer definition
being used.

metalLayer is the name of the metal layer.

MDSlayer1 is the name of the MDS layer with ID = 1. This entry must be specified
in the field n, where n is the ID of the metal layer in MDS.

For example, the following rule is used to make sure that mwlib and MMICA circuit
elements are correctly drawed in ADS:

mwlib_layerDef| ;FMetal; ; ;FDieDef|

MMICA_layers| ;SecndMet; ; ; ; ; ; ;Ohmic|

Refer to Appendix A, Model and Component Differences, for more information on
writing custom translation rules.
2-6 Specifying the Metal Layer for Circuit Components in Layout Pages

Chapter 3: Translation Example

This chapter provides a detailed example that illustrates how an MDS design is
imported into ADS. In the example, an IFF file is created for an MDS FET amplifier
and the mds2ads utility is used to translate the design from MDS to ADS. After
translation, the design is simulated in ADS and the S-parameter data is plotted.

Translating the Design
To import an MDS design into an ADS project:

1. Launch MDS and double-click the Passive library icon.

2. The File window appears. Double-click on FET_matching_network .

3. In the Workbench window, double-click the Schematic icon.

4. The schematic appears. From the menu bar, choose Perform > DDL.

5. In the Command File dialog box enter migrate.ddl and click OK.

6. The Design Migration dialog box appears. Enter fet_matching.iff and click OK.
The Message window appears and provides the status of the IFF file creation
process.

7. Double-click the Dataset icon.

8. Right-click and choose Perform > Write > Citifile .

9. Enter the name of the CITI file (e.g., FET_matching_network_mds.cti) and click
OK.

10. Start the translator.

• UNIX—Type mds2ads at the prompt.

• PC—From the Start menu, choose Programs > Advanced Design System 2001
> ADS Tools > Microwave Design System Import .
Translating the Design 3-1

Translation Example
11. The MDS to ADS Import dialog box appears.

Click the Source IFF File Browse button, locate the IFF file that you have just
created, select it, and click OK.

12. Return to the MDS to ADS Import dialog box and accept the default ADS
project name or enter a new one.

13. Click the Directory for ADS Project Browse button and select a directory.

14. Click the Import button in the MDS to ADS Import dialog box.
3-2 Translating the Design

15. The MDS Import Status window appears. When the translation is complete,
click Close .

16. Click Exit in the MDS to ADS Import dialog box.

Importing the MDS Dataset

To import the MDS dataset containing the MDS simulation results:

1. Launch ADS.

2. From the ADS Main window, choose File > Open Project .

3. In the Open Project dialog box locate fet_matching_prj, select it, and click OK.

4. Start the instrument server (Window > File/Instrument Server).

5. Click Read followed by File .

6. Select Citifile from the file format list.

7. Click the File Name Browse button to select the Citifile. Specify the dataset
name.

8. Click the Read File button.
Translating the Design 3-3

Translation Example
Simulating the Design in ADS

To simulate the design in ADS:

1. Open the design if it is not yet open. Choose Simulate > Simulate from the
Schematic window, or click the Simulate icon.

2. When the Data Display window opens, click the Rectangular Plot icon, move the
pointer to the display area, and click to place the plot.

3. The Plot Traces & Attributes dialog box appears. Select S(1,1), click Add , and
click OK. The S(1,1) data is plotted in the Data Display window (shown next).
3-4 Translating the Design

Comparing MDS and ADS Results
MDS and ADS simulations can provide different results because of the different
simulation models used for the distributed components.

The first plot below shows the simulation results for the transmission parameter S12.
The blue trace represents the ADS results obtained with the ADS standard models
for distributed components. The magenta trace shows the results obtained with MDS.
The trace of the ADS results obtained with MDS equivalent components
implemented in ADS is directly under the magenta line and is not visible.

ADS standard models for
distributed components

MDS results and MDS equivalent
components implemented in ADS
Comparing MDS and ADS Results 3-5

Translation Example
The difference between the MDS and ADS results is presented on the second plot
(shown next). The blue trace shows the results using ADS standard models. The red
trace shows the results when MDS equivalent components are used.

MDS equivalent components

ADS standard components
3-6 Comparing MDS and ADS Results

Appendix A: Model and Component
Differences

Introduction
A large number of MDS distributed components have been added to ADS 2001 to
allow for the translation of MDS designs to ADS. They are named using an” _MDS”
suffix appended to the end of the MDS component name. These components do not
appear on the ADS component palettes, but they can be added by typing the
component name in the ADS Component History field.

Similar Components
Of the MDS distributed components added to ADS 2001, there are several similar
ADS components. These similar components originally came from Series IV and are
treated as ADS standard distributed components.

The similarities and differences of MDS and ADS components are summarized in the
following tables.

Table A-1. Similar MDS and ADS Components.

Library Components

Coplanar CPWCTL, CPWTL, GCPWTL

Interconnects WIRES

Microstrip MS3CTL, MSABND, MSACTL, MSAGAP, MSBEND, MSCTL, MSCRNR,
MSCROSS, MSGAP, MSICDF, MSIDC, MSLANGE, MSOBND, MSOC MSRND,
MSRTK2, MSRTL, MSRTL2, MSSLIT, MSSPLC, MSSPLR, MSSPLS, MSSTEP,
MSTAPER, MSTEE, MSTL, TFC, TFR

Nonlinear
Devices

BJT (Gummel-Poon, VBIC), MEXTRAM), Diode (Diode, HP Diode), MESFET
(Curtice, Materka, TOM1, HP FET), MOSFET (Level 1 and 3, HP MOS, MOS
Model 9, BSIM1, BSIM2, BSIM3), JFET

Stripline SL3CTL, SL4CTL, SL5CTL, SLABND, SLCRNR, SLCTL, SLGAP, SLOBND,
SLOC, SLRBND, SLTEE, SLTL, SLUCTL, SLUTL

Suspended
Substrate

SSCTL, SSTL

Transmission
Lines

COAX, CTL, DRC, ETAPER, FINLINE, RWGTL, TLE, TLOC
A-1

Translator Customization
When MDS designs are translated to ADS 2001, you can use either the ADS standard
distributed components or the MDS equivalent distributed components. You may
want to perform separate translations using each set of components and compare the
results to verify that the design was correctly translated.

It is recommend that the ADS standard distributed components be used for your final
design translation because these components provide more accurate results. Also, the
ADS components will be improved in future releases, but the MDS equivalent
components may not.

Components Unique to MDS
Thirty-four MDS components do not have equivalent components in ADS. Since these
were also added to ADS 2001, the translation of MDS designs will always use these
MDS components. They will be used regardless of the distributed components
selected in the MDS to ADS Import dialog box.

The components unique to MDS are listed in the following table.

Table A-2. Components Unique to MDS.

Library Components

Coplanar ACPWDS, ACPWTL, CPWDS, CPWTLFG,

Interconnects RIBBONG, RIBBONS, WIREG

Microstrip MS4CTL, MS5CTL, MSAGAP, MSIDC, MSRND, MSSVIA, MSVIA,
MSWRAP

Stripline SL3CTL, SL4CTL, SL5CTL, SLGAP, SLUCTL

Suspended
Substrate

BR3CTL, BR4CTL, BRCTL, BROCTL, SS3CTL, SS4CTL,
SS5CTL, SSTFR, SSLANGE, SSSPLC, SSSPLR, SWSSPLS

Transmission
Lines

SLOTTL, TL
A-2

Appendix B: Translating Design Libraries
Translating design libraries consists of several steps. If any of the designs are
user-defined (as opposed to designs built from supplied models), additional steps are
required. For details on that process, refer to “Creating Customized Rules Files” on
page C-9.

Update MDS
models to ADS

Create customized
rules file(s)

Move the updated
files to an ADS
library location

Translate top-level
designs

Update artwork
macros (where
applicable)

Copy MDS library
designs to an MDS
project. Translate
designs into an
ADS project

User-Defined ModelsSupplied Models

Set required
environment
variables
B-1

Translator Customization
Copying Designs to an MDS Project
Several designs can be translated simultaneously. But they must first be part of an
MDS project. If you have several designs to translate, and they are not currently part
of a project directory (for example, in a directory outside a project that serves as a
library), copy them to a project before translation. If you plan on translating designs
individually, you can leave them in their current location.

Relocating Designs for Site-Wide Use
Once all designs involved have been translated, you can move the designs into ADS
library locations shown below:

Design (.dsn) Files: $HPEESOF_DIR/custom/circuit/symbols

AEL (.ael) Files: $HPEESOF_DIR/custom/circuit/ael

Set the SITE_AEL variable to include the search path for the .ael files (the /symbols
directory will be searched automatically for .dsn files). Example:

SITE_AEL = $HPEESOF_DIR/custom/circuit/ael/

Set this variable in the file $HPEESOF_DIR/custom/config/de_sim.cfg.
B-2

Appendix C: Translator Customization
MDS to ADS component translation is accomplished using a database of rules that
map the components on a parameter-to-parameter basis. Standard components are
mapped with MDS*.rul, the supplied rules file. To map custom parts, you need to
create a custom rules file.

When designs or files are translated, the translator first looks for a custom rules
database and then for the supplied rules database. Custom translation rules take
precedence over supplied rules.

Writing Custom Translation Rules
Examples of rules used by the translator can be found on UNIX platforms at

$HPEESOF_DIR/config/MDS*.rul

and on the PC at

%HPEESOF_DIR%\config\MDS*.rul

Rules files can be created using any text editor. Blank lines or lines that begin with a
pound (#) symbol are ignored. Translation rules use the following syntax and should
be on a single line of the rules file:

OldName|ADSName|ParmRule|DefRule|PinRule|NameRule|DelFlag|MappedParmRule|

The rule file fields are described in the following table.

Field Description

OldName MDS component name

ADSName ADS component name

ParmRule Parameter mapping AEL function name (optional)

DefRule Component definition mapping rule (obsolete)

PinRule
SrcPinNum
SrcPinName
DestPinNum
DestPinName

Pin mapping rule list (optional)
Old pin number
Old pin name (obsolete)
Destination pin number
Destination pin name (obsolete)

NameRule Name mapping AEL function name (optional)

DelFlag Delete flag (TRUE or FALSE)
C-1

Translator Customization
Example:

XFER|Transformer| | | | |FALSE| |

In this example, an MDS component named XFER is translated to an ADS
component named Transformer. All parameters that have the same name in MDS as
they do in ADS are copied to the new component. A simple rule of this form will
translate most custom parts.

Example:

XFER| | | | | |TRUE| |

In this example (setting the Delete Flag to TRUE), the MDS component will not be
translated. The status messages produced during translation will indicate that the
component is not translatable and has been removed from the design.

If the names of component parameters need to be changed during the translation,
you need to use the MappedParmRule field. The syntax for this field is:

ADSParmName,[@|&|%]ParmName,DataItemName,DataItemParmName,DataItemParmDefFor
m,

Note that when any of the above fields is not used (obsolete or optional) the
field separator "|" must still be included.

MappedParmRule
ADSParmName
ParmName
DataItemName
DataItemParmName
DataItemParmDefForm

Mapped parameter rule list (optional)
ADS parameter name
MDS parameter name
MDS Data Item Name
MDS Data Item parameter
This parameter is no longer used
C-2

The MappedParmRule field syntax is described in the following table.

Example:

GYR|Gyrator| | | |False|Ratio,R, , , ,;|

In this example, the rule copies the value from the old name (R) to the new name
(Ratio). The third through fifth parameters are not used.

Example:

MONOPOLE|AntLoad| | | | |FALSE|AntType,@MONOPOLE, , , ,;RatioLR,LR, , ,
,;Length,L, , , ,;|

In this example, an MDS component called MONOPOLE is translated to a more
general ADS component named AntLoad. The parameter AntType is given a default
value of "MONOPOLE" by using the "@" character.

Field, MappedParmRule Description

ADSParmName ADS Component Parameter Name

ParmName
@ - Followed by a default value of the parameter.
This allows a new ADS parameter to have a default
value rather than copying a value from the MDS
component
& - The parameter value of MDS component will be
quoted as a string. This is normally needed in ADS
for items that are not numeric such as the name of a
substrate or a filename.
% - The case of the specified MDS parameter name
is not significant (e.g Cond and COND refer to the
same parameter)

MDS Component Parameter Name

DataItemName MDS Data Item from which to retrieve the
named parameter

DataItemParmName MDS Data Item Parameter from which to
retrieve the value

DataItemParmDefForm No longer used
C-3

Translator Customization
Retrieving Parameter Values from MDS Data Items

Because ADS does not support the MDS Data Item (as such), you may want to copy
the parameter value of an MDS Data Item to an appropriate ADS component
parameter. You can do this using the DataItemName and DataItemParmName fields.
For example, you can retrieve the value of the TEMP parameter of the MDS TEMP
Data Item—using these fields—and copy it to the ADS parameter Temp, for a given
component.

Example:

RES|R| | | |FALSE|Temp,TEMP,TEMP,TEMP, ;|

In this example, the MDS component RES is translated to the ADS component R and
all parameters that have the same name are copied. The MappedParamRule says to
copy the value of the TEMP parameter of the MDS TEMP Data Item to the ADS
parameter Temp (for this component).

Setting Parameter Values Using AEL Functions

The translator can invoke an AEL function during the translation. To use this
feature, specify the name of an AEL function in the ParmRule field. This enables you
to extend the translation capabilities, such as computing numerical values from other
parameters.

Four pieces of information are combined as a list and sent to the AEL function, which
will return an updated parameter list to the translator. The parameter list sent to the
AEL function will already have parameter values for all parameters that have the
same name in the MDS component that they have in the ADS component. It will also
have any parameters copied that are specified by a MappedParmRule. The translator
will use the updated parameter list to modify the replaced instance.

Input Parameter:

list(list(mdsParmList, /*MDS component parameter list*/
adsParmList), /*ADS component parameter list*/
instH, /*New ADS instance handle*/
mdsItemName) /*MDS component Name*/

Output Parameter:

adsParmList - Updated ADS component parameter list

The syntax for mdsParmList and adsParmList is shown next.

mdsParmList =
C-4

or

adsParmList =

list(list(Name1, Form1, Value1, UnitString1, UnitCode1),
list(Name2, Form2, Value2, UnitString2, UnitCode2),
...
list(NameN, FormN, ValueN, UnitStringN, UnitCodeN))

where

Consider the following AEL function:

defun merullib_SUBSTRATE ()
{
 decl newParmH, tmpStr, newParmName;
 decl oldParmList = car(car(arg_list()));
 decl newParmList = car(cdr(car(arg_list())));
 decl j, i = listlen(newParmList);
 decl rhsH;

 if (oldParmList != NULL)
 {
 for(j=0; j<i; j++)
 {
 tmpStr = "";
 newParmH = nth(j, newParmList);
 newParmName = car(newParmH);

 if (!strcmp("Cond", newParmName))
 {
 decl rhoH;
 //
 // get parameter RHO
 //
 tmpStr = merul_extract_parm(oldParmList, "RHO", NULL, NULL, NULL);

if(tmpStr)
 {
 rhoH = car(merul_plib_parse(tmpStr, nth(MERUL_PARM_UNIT_CODE,newParmH)));
 //
 // construct parameter
 //
 if (rhoH || strlen (rhoH) !=0)
 {

 if (val (rhoH) != 0)

Name Name of parameter

Form Form of the current parameter

Value Value of the parameter (with unit string)

UnitString Unit string of the current parameter

UnitCode Unit code of the parameter
C-5

Translator Customization
 tmpStr = identify_value(1.0E+50/val (rhoH));
 else
 tmpStr = identify_value(1.0E+50);
 }
 else
 tmpStr = identify_value(1.0E+50);
 }
 }
 else
 if (!strcmp("Mur", newParmName))
 {
 decl tmpParmList = meutil_get_dataitem_parmlist(TRUE, "PERM", FALSE);
 tmpStr = merul_extract_parm(tmpParmList, "MUR", NULL, NULL, NULL);
 }
 else
 if (!strcmp("TanD", newParmName))
 {
 decl tmpParmList = meutil_get_dataitem_parmlist(TRUE, "TAND", FALSE);
 tmpStr = merul_extract_parm(tmpParmList, "TAND", NULL, NULL, NULL);
 }

if(tmpStr)
 {
 newParmH = repla(newParmH, tmpStr, MERUL_PARM_VALUE);
 newParmList = repla(newParmList, newParmH, j);
 }
 }
 }
 return newParmList;
}
*/

This example illustrates most features of a typical ParmRule AEL function.

When this AEL function runs, all parameters with the same name in both the MDS
and the ADS components have already been copied to the ADS component. This AEL
function only needs to modify parameters that need special handling.

The following events occur when the function is run:

• On the fourth and fifth lines, it gets the oldParmList and newParmList for the
MDS and ADS components.

• The next line sets "i" to the length of the newParmList.

• On line 11 a "for" loop is started that loops through the parameters from the
newParmList.

• The variable "newParmName" is assigned the name of the next parameter of
the new component.

• A series of conditional "if" statements looks for specific parameter names and
does special handling for these parameters. Within the "if" statement that
C-6

selects "Cond" the function merul_extract_parm (line 23) is used to get the
value of the "RHO" parameter from the old component.

• The third and forth parameters of merul_extract_parm are DataItemName and
DataItemParmName, as described previously.

• The term "tmpStr" is a string containing the old parameter.

• The term rhoH is the numeric value of the parameter including applying the
unit associated with this parameter.

• The lines starting at line 30 compute a string value for tmpStr based on the
numeric value of the RHO parameter. Near the end of the function, if tmpStr
had a value, a newParmH is created for tmpStr and it is used to update the
parameter list for the new component.

Mapping Component Pin Changes

If the pin connections of the old component and the new component are not the same,
you can create a PinRule to interchange the pin numbers using the following
sub-fields:

SrcPinNum,SrcPinName,DestPinNum,DestPinName,;

where

Note that when any of the above fields is not used or is optional, the comma (,) field
separator must still be used. A semicolon (;) must be used at the end, and multiple
PinRules can be appended together to map several pins, with each PinRule being
separated by a semicolon (;).

Note If DestPinNum is specified but SrcPinNum is not, the DestPinNum of the new
instance will be grounded.

SrcPinNum Old pin number (optional)

SrcPinName Old pin name (not used)

DestPinNum Destination pin number

DestPinName Destination pin name (not used)
C-7

Translator Customization
Example:

Neg1|Deembed1| | | , ,2, ,;| |FALSE| |

In this example, pin 2 of the ADS Deembed1 component would be grounded.

Example:

PCCROS|PCCROS| | |2, ,4, ,;3, ,2, ,;4, ,3, ,;| |FALSE| |

This example contain 3 PinRules. MDS pin 2 is mapped to ADS pin 4, MDS pin 3 is
mapped to ADS pin 2, and MDS pin 4 maps to ADS pin 3.

Mapping to a Component Based on Parameter Specifics

If you want to map an MDS component to an ADS component based on an MDS
component parameter, you can specify an AEL function in the NameRule field.

Example:

defun merullib_name_P2D()
{
 decl oldParmList = car(car(arg_list()));
 if (listlen(oldParmList) == 1)
 {
 return "DataAccessComponent";
 }
 else
 {
 return "AmplifierP2D";
 }
}

This example looks at the number of parameters of the MDS component. If there is
one parameter, then the "DataAccessComponent" name is returned, otherwise the
name "AmplifierP2D" is returned.
C-8

Creating Customized Rules Files
To use custom rules, you need to create one or more rules files and place them in your
$HOME/hpeesof/config (UNIX) or %HOME%\hpeesof\config (PC) directory. These
files must end with the .rul suffix and be compiled into a rules database file
(meruls_mds_custom.db).

To compile your custom rules file(s)g:

1. Launch the translator as described in “Translating Designs into ADS” on
page 2-3.

2. Click Custom Rules . The MDS Custom Rules dialog box appears. If any .rul files
are found in the local config directory, they will appear on the drop-down list.

3. Select the desired rules file from the drop-down list and click Add . Alternatively,
click Add All to merge all rules files into one custom database.

Hint To modify the entries in the list box, highlight a single entry and click
Remove or Remove All to clear the box and start over.

4. Once the list box contains the desired filename(s), click Build Custom Database .
The status panel at the bottom of the dialog box displays messages reporting
the progress. When the process is complete, a message to the effect of The rules
database has been successfully built appears.

5. Select the option Use Custom Database to use it for the upcoming translation
and click OK to proceed with the translation.
C-9

Translator Customization
C-10

Appendix D: Batch Mode Translation
This appendix describes how to set up and perform MDS batch translations from the
command line.

Note Translating MDS designs from a command line requires knowledge of how to
set environment variables and work in a DOS window or UNIX shell. Therefore, this
task should only be attempted by advanced users.

hpeesofme Setup
Prior to use, the hpeesofme program must be properly configured.

Windows

To setup the hpeesofme program on a PC, follow the steps listed below:

1. Open an MS DOS shell.

2. Set the $HPEESOF_DIR environment variable to your ADS installation
directory. For example

set HPEESOF_DIR=<ADS_install_dir>

3. Set your PATH environment variable to include the $HPEESOF_DIR\bin
directory. For example

set path=C:\ADS2001\bin;%path%

4. Set the appropriate library path for your operating system. For example

set shlib_path=$shlib_path:$HPEESOF_DIR\lib\win

UNIX

The hpeesofme program is setup on UNIX platforms as follows:

1. Set your $HPEESOF_DIR environment variable to your ADS installation
directory. For example, if you are using the Korn shell enter

export HPEESOF_DIR=<ADS_install_dir>
D-1

Translator Customization
2. Set your PATH environment variable to include the $HPEESOF_DIR/bin
directory. For example, if you are using the Korn shell enter

export PATH=$HPEESOF_DIR/bin:$PATH

3. Set the appropriate library path for your operating system. For HP-UX
operating systems (i.e. hpux10 or hpux11), enter the following:

SHLIB_PATH=$SHLIB_PATH:$HPEESOF_DIR/lib/hpux10

or

SHLIB_PATH=$SHLIB_PATH:$HPEESOF_DIR/lib/hpux11

For SUN operating systems (i.e. sun4 or sun55), enter

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HPEESOF_DIR/lib/sun4

or

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HPEESOF_DIR/lib/sun55

For AIX operating systems (i.e., aix4), enter

LIBPATH=$LIBPATH:$HPEESOF_DIR/lib/aix4

Executing hpeesofme
The MDS translator is started using the following syntax:

hpeesofemx hpeesofme -me -nw -mep <projectDef> -mem <modelType> -mec
<customRules> -env <envFileName>

where:

-me Forces the translation to start after boot-up
(required)

-nw Invokes the program in the non-visual
mode (required)

-mep <projectDef> Specifies the project to migrate (required)

-mem <modelType> Specifies the distributed models type
(optional)
D-2

Additional Option Information

-mep

This option has the following syntax:

“SrcPath|DefaultDsnName|Option|DestPath|UnitPref”

where:

-mem

This option allows you to specify the distributed components used during MDS
translation. The acceptable values are:

-mec <customRules> Specifies the custom rules database with
path and extension (optional)

-env <envFileName> Specifies the environment file to be used
(usually de_sim) (required)

SrcPath IFF file path

DefaultDsnName Not applicable for MDS translator (“NA”)

Option Remove existing ADS project flag (0: remove, 1:
keep existing project)

DestPath Destination project path

UnitPref Unit preference (0: mil, 1: millimeter, 2: micron)

“0” ADS standard distributed components

“1” MDS equivalent distributed components
D-3

Translator Customization
Example
The following is an example of a Perl script that is capable running multiple
translations in batch mode:

a script to run the mds translator from the command line

#

@designs = (“file1”, “file2”);
$iffdir = “c:/users/myname/iffFiles”;
$adsdir = “c:/users/myname/adsmigration/mdsmigrated”;
$customRules = “c:/users/myname/hpeesof/config/meruls_mds_custom.db”;

foreach (@designs)

{
print “\n\n********* translate $_ ***********\n\n”;
$mdsfile = “$iffdir/$_”.’.iff’;
$adsproj = “$adsdir/$_”.’.prj’;
system(“hpeesofemx hpeesofme -nw -me -mep \”$mdsfile|defaults|0|$adsproj\”
-mec \”$customRules\” -mem \”1\” -env de_sim”);
system(“egrep -e ERROR -e WARNING -e Error -e Warning
$adsproj/$_/me_err.log”);
}

D-4

Appendix E: Translation Issues
This appendix describes the MDS to ADS translation issues that have been identified
to date and provides workarounds for several of them.

Known Issues
The various MDS to ADS translation issues are summarized in Table E-1.

Table E-1. MDS to ADS translation issues

Item Notes

AC Control
ACFORM

Not translated

Datasets Not translated. Refer to “Importing MDS
Datasets” on page 2-5.

Density & Distribution
Controls

Not translated. Refer to “Density and
Distribution Controls” on page E-4.

Design of Experiments
Control (DOE)

Not translated

DATASETVARIABLE,
POLARDATASETVARIABLE

Translated to a DataAccessComponent(DAC). Refer
to “Importing MDS Datasets” on page 2-5.

IBIS Models Not supported in ADS

MDS components using dBm
scale factor

Many MDS components use dBm as a scale factor,
which ADS does not recognize. Refer to
“Component Power Parameters” on
page E-2.

MDS designs using
Symbolically Defined Devices
(SDD) with complex variables

MDS and ADS use different SDDs. Refer to
“Symbolically Defined Devices” on
page E-5.

MDS Momentum Frequency dependent material parameter
specification using lists, coaxial ports, and partial
edge ports no longer supported in ADS Momentum.
MDS Momentum ports, substrates, mesh and
simulation must be setup within the ADS use model
following migration. Refer to “Momentum” on
page E-4.
E-1

Translator Customization
Component Power Parameters
Many MDS power parameter values were specified using dBm as a scale factor.
However, nearly all ADS component power parameters are defined in Watts and ADS
does not recognize dBm as a scale factor. In most cases, when an MDS value is
specified in dBm, it needs to be mapped to ADS in Watts using the dbmtow(x)
function, where x is the value in dBm. In the rare cases in which the ADS power
parameter is defined in dBm, the dBm scale factor should be stripped from the MDS
value when it is used in ADS. You can also change dBm to “_dBm”, which is
interpreted by the simulator as a scale factor of 1.

Datasets
The MDS translator does not translate datasets. To work around this problem, do the
following:

1. Translate the MDS designs.

2. Use MDS to write the dataset as a CITI file.

Monte Carlo Controls Not translated. Refer to “Monte Carlo Controls”
on page E-4.

MSTEE models Microstrip tee models are implemented differently in
MDS and ADS. Refer to “Microstrip Tee
Models” on page E-4.

step() function MDS and ADS handle the step() function differently
when the argument is an integer equal to 0. Refer to
“step() Function” on page E-5.

System Waveform Sources Not translated and not supported in ADS

Layout pages (1) ADS does not support multiple units within the
hierarchy of a design. All translated designs will be in
the same unit.

Layout pages (2) ADS metal layer cannot be assigned. Refer to the
section "“Specifying the Metal Layer for
Circuit Components in Layout Pages” on
page 2-6.

Table E-1. MDS to ADS translation issues (continued)

Item Notes
E-2

3. Open the translated project in ADS and import the CITI file using the
Instrument Server. A new dataset is created under <project>/data.
E-3

Translator Customization
Density and Distribution Controls
The procedure to model parameters using statistical distributions is as follows:

1. Select the component to model. Double-click on it to access its associated dialog
box.

2. From the dialog box, highlight the parameter that you want to vary in the
Select Parameters dialog box.

3. Click the Optimization/Statistic Setup button.

For more information, refer to the Tuning, Optimization, and Statistical Design
manual.

Microstrip Tee Models
The MDS and ADS microstrip tee models are implemented differently. The reference
plane is in the center for MDS (MSTEE) and on the edges for ADS (MSTEE). This can
lead to significantly different simulation results if you use ADS microstrip models in
a converted ADS design.

Momentum
The following MDS Momentum features are no longer supported by ADS Momentum:

• Frequency dependent material parameter specification using lists

• Coaxial ports

• Partial edge ports

The migration tool allows the migration of layouts. However ports, substrates, mesh
and simulation have to be setup within the ADS use model.

Monte Carlo Controls
The Monte Carlo elements (MonteCarlo and MonteCarloForm) are not translated
into ADS. Use the component in the Optim/Stat/Yield palette to specify a yield
analysis based on the Monte Carlo method.
E-4

step() Function
MDS and ADS handle the step() function differently when the argument is an
integer equal to 0. In MDS, step() returns different results for integer and real
arguments. In ADS these arguments return the same value. The differences in how
MDS and ADS handle this function are summarized below:

Symbolically Defined Devices
MDS designs that use SDD with complex variables can be translated, but will fail to
simulate because the SDD model in ADS 2001 does not support complex variables.
The suggested workaround is to translate the design, open it in ADS 2001, and
reformulate the SDD equations using real variables prior to simulation.

Unsupported Components
If an MDS component is no longer used by the Advanced Design System, it is
deactivated in the imported copy of the design. After translation, replace the
unsupported component with an ADS component that has similar functionality. If it
is a user-defined component, and the same component is available in the Advanced
Design System, it can be activated.

MDS ADS

step(int (0)) = 0 step(int (0)) = 0.5

step(real (0)) = 0.5 step(real (0)) = 0.5
step() Function -5

-6 Unsupported Components

Index

A
AEL functions, C-4

B
batch mode translation, D-1

hpeesofme setup, D-1
hpeesofme, executing, D-2
sample Perl script, D-4

C
component power parameters, E-2
components

mapping MDS to ADS, C-8
mapping pin changes, C-7
MDS and ADS similar, A-1
MDS unique, A-2
unsupported, E-5

copying designs, B-2
custom translation rules, C-1
customization, translator, C-1
customized rules files, C-9

D
datasets, E-2
datasets, importing, 2-5
dBm, E-2
dbmtow() function, E-2
density and distribution controls, E-4
design libraries, translating, B-1
design translation overview, 1-1
designs

copying, B-2
exporting, 2-1
relocating, B-2
translating, 2-3

E
examples, translation, 3-1
exporting MDS designs, 2-1

F
files, customized rules, C-9
functions

AEL, C-4
dbmtow(), E-2
step(), E-5

I
importing

and simulating, 2-1
datasets, 2-5

M
mapping

component pin changes, C-7
MDS components to ADS, C-8

MDS
and ADS similar components, A-1
exporting designs, 2-1
translated items, 1-2
unique components, A-2
versus ADS, A-1

microstrip tee models, E-4
Monte Carlo elements, E-4

P
parameter values

retrieving, C-4
setting, C-4

R
relocating designs, B-2

S
step() function, E-5
symbolically defined devices, E-5

T
translated items, 1-2
translating

design libraries, B-1
designs, 2-3

translation
batch mode, D-1
example, 3-1
issues, E-1
overview, 1-1
translated items, 1-2
writing custom rules, C-1

translation issues, E-1
component power parameters, E-2
datasets, E-2
density and distribution controls, E-4
Index-1

known issues, E-1
microstrip tee models, E-4
Monte Carlo elements, E-4
step() function, E-5
symbolically defined devices, E-5
unsupported components, E-5

translator customization, C-1

U
unsupported components, E-5

V
variables, setting for site-wide libraries, B-2
Index-2

	Contents
	Chapter 1: Design Translation Overview
	Translated Items

	Chapter 2: Importing and Simulating
	Exporting Designs from MDS
	Translating Designs into ADS
	Importing MDS Datasets
	Specifying the Metal Layer for Circuit Components in Layout Pages

	Chapter 3: Translation Example
	Translating the Design
	Importing the MDS Dataset
	Simulating the Design in ADS

	Comparing MDS and ADS Results

	Appendix A: Model and Component Differences
	Introduction
	Similar Components
	Components Unique to MDS

	Appendix B: Translating Design Libraries
	Copying Designs to an MDS Project
	Relocating Designs for Site-Wide Use

	Appendix C: Translator Customization
	Writing Custom Translation Rules
	Retrieving Parameter Values from MDS Data Items
	Setting Parameter Values Using AEL Functions
	Mapping Component Pin Changes
	Mapping to a Component Based on Parameter Specifics

	Creating Customized Rules Files

	Appendix D: Batch Mode Translation
	hpeesofme Setup
	Windows
	UNIX

	Executing hpeesofme
	Additional Option Information

	Example

	Appendix E: Translation Issues
	Known Issues
	Component Power Parameters
	Datasets
	Density and Distribution Controls
	Microstrip Tee Models
	Momentum
	Monte Carlo Controls
	step() Function
	Symbolically Defined Devices
	Unsupported Components

	Index

